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L 1. Introduction

We are developing a new approach to estimation of statistics. This technique, called
“antisampling”, is fandamentally different from known techniques in that it does not
involve sampling in any form. Rather, it is a sort of inverse of sampling.

Consider some finite data population P that we wish to study (see figure 1). Suppose
that P is large, and it is too much work to calculate many statistics on it, even with a
computer. For instance, P might be one million records, too big for the main
memories of most personal computers. We would have to store it on disk, requiring
minutes to transfer to main memory for a calculation of a single mean. If we arein a
hurry, or if we are doing exploratory data analysis and are just interested in a rough
estimate of the statistic, this is too long. So we could create a sample S of P, a

sigaificantly smaller selection of items from P, and calculate statistics on S rather than

. om P, extrapolating the results to P.

But there is another way we could estimate statistics on P, by coming from the other
divedtion. We could take some larger set known to contain P — call it A for
"antisample"® - and calculate statistics on it, then extrapolate down to P.
Dowawards inference might be preferalie to upwards inference from a sample,
because an antisample can contain more information than a sample because it is

- bigger. rmw‘,mﬂeSmyboMrmbutimponutdaunmh-
. . population P that are in antisample A. .

But there seems to be a big problem with antisampling: antisample A must be larger
than population P, and it would seem more work to calculate statistics on A than P.
But not necessarily. An important principle of economics is that cost can be
amortised, distributed across many uses. Just as the cost of development of a
package of statistical routines can be distributed over many purchasers, the work of
calculating statistics on an antisample A can be charged to many uses of those
statistics. We can do this if we choose an interesting antisample that people often ask
questions about. Of course, we dom’t have to confine ourselves to one antisample; we
can have a representative set of them, a "database abstract" for a particalar universe
of data populations or database. There are many excellent situations for
amortisation. For instance, U.S. Census aggregate statistics on population and income
are used by many different researchers for many different purposes, and laws require
periodic publication of this information anyway.

Two caveats regarding these techniques are necessary, however. First, a form of the
"closed world assumption” importast in database research [11] is necessary: we can
only make inferences about items within the amtisample, and not any larger
population. This means that if the populations themselves are samples (a "hybrid"
approach of antisampling and sampling) we cannot make inferences about the larger
populations from which those samples are drawn, which makes the approach not very
useful. Secomd, as with sampling, estimates are approximate. Simce antisampling and
sampling sre rather different methods of estimation, sometimes antisampling is better
than sampling, but sometimes it is worse. Generally antisampling is only a good idea
when oae or more of three conditions hold: (1) users are doing exploratory data
analysis, the initial stages of statistical study; (3) users are statistically naive; or (3)
data is predominantly kept on secondary (magnetic or optical disk) or tertiary
(magnetic tape) storage.

* This terminolegy o suggested by the matter-antimatter dichotomy Is physics. Antisampling s & sort of

oppeaite to sampling, usiag opposites of sampling techaiques.
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2. The anslogy of antisampling to sampling

2.1. Areas of correspondence of antisampling and sampling

Analogs of nearly all the same techniques can be used with antisampling as with
sampling. For instance if the sum statistic on a sample S is T, then the extrapolation
rule for the sum statistic inferred on the population P is T times the ratio of the size of
* P to the sise of S. Similarly, if a sum statistic on an antisample is T the extrapolated
estimate of the statistic on P is T times the ratio of the sise of P to the sise of A. For
another thing, both sampling and antisampling can combine estimates based on
multiple samples and muitipie antisamples using various methods. With antisampling
this is perhaps more common since a study population can be specified as the
intersection of several antisample *parent® sets.

Antisampling is in fact a more natural direction for making inferences, since the
inference rules (equivalently, "estimation methods®) used with sampling are often
derived from assuming a class of distributions representing the data population and
reasomning what characteristics of the sample would be, then inverting this and
reasocuning backwards. So antisampling rules are derived, them Imverted to get

rules. Thus we expect less uncertainty associated with antisampling than

. sampling. Note also another reason: sampling requires assumptions of the form of the

distribution from which the sample is drawn, while antisampling does not use such
information. But there is a concomitant disadvantage of antisamnpling: the population
about which inferences are drawn will not usually be random with respect to the
antisamples. We can assume it is random to get "reasomable-guess” estimates of
statistics, but this will get us into trouble when different attributes of the data are
strongly correlated and the query mentions the correlated attributes. Another
approach is to store many correlation (linear or monlinear) statistics about an
antisample so that the randomness of a population within an antisample may be
estimated. These complexities have a partial compensation in bounding capability, a
special property of antisampling 2ot shared by sampling, diecussed in the next section.

One important aspect of antisampling deserves emphasis, however. Unlike sampling,
antisampling is knowledge-intensive: it requires comstruction of a special auxiiary
structure, the database abstract. This makes antisampling systems like the expert
systems of artificlal intelligence (6], requiring for comstruction careful cooperation of
experts in the domain of the data. This is because the choice of just what data to put
in the database abstract is important. One could just parameterise the distribution of
each attribute, then parameterise the two-dimensional distribution for each palr of
attributes, and s0 om, as {8] does, but this exhaustive approach fails to take advantage
of many redundancies between the various distributions involved. After all, there are
an iafinite number of possible statistics, subsets, and attributes (included derived ones)
on a finite databese, and evem with strong complexity Hmits on queries the
combinatorial possibilities can be immense. Correlations between attributes can be
quantified as statistics too, by regression coefficients. Expertise with the data is thm
required to advise what statistics best summarise it. This must be traded off with the
frequency that users ask particular sorts of queries (perhaps weighted by utilities of
query answers to them). Both normative (e.g. mean) and extremum (e.g. maximum)
statistics are desirable for the abetract, to characterise both the common and the
uncommon ia the data, since uwsers will want to ask about both. Important sets of
related items formed by pertitioning the values of each attribute should be the sets on
which statistics are computed (what we in (18] call "first-order sets”, and what [8)
calls o).
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2.3. Abeolute bounds and production systems

Antisampling supports a different kind of inference virtually impossible with sampling:
reasoning about absolute bounds on statistics. Suppose we know the maximum and
minimum of some attribute of an antisample A. Then since P must be contained
entirely within A, any maximum, minimum, mean, median, or mode of P is bounded
above and below by the maximum and minimum on A. But you can't do this the
other way around: given the maximum and minimum of a sample 8, you have no idea
what the largest possible value or smallest possible value on the population P is for the
maximam, minimum, mean, median, or mode on P. With particular assumptions
about P and 8 you can put confidence limits on statistics of P -- say if you assume
that 8 is a random sample drawn from P, and that P doesn't contain any extreme
outliers, the mean of S will tend to be close to the mean of P, with a certain standard
deviation. But assumptions like these, common in statistics, are messy and
uncomfortable for computer scientists. There is a qualitative difference between being
98% sure and being completely sure. If one can obtain a tight absolute bound, it
shouid be preferable to an estimate with a confidence interval.

But a serious objection may be raised to absolute bounds as opposed to estimates and
coafidence intervals: they can sometimes be very weak because they must account for
a foew highly extreme but possible cases. There are four answers to this. Pirst, many
uses of statistics do not require high degrees of accuracy. If one is doing exploratory

* 'data amalysis,; the statistic may just be used to get an an idea of the order of the -
magnaitude of some phenomenon in the database, and abaclute bounds within an order

of magnitude are quite satisfactory [20], Also, there are situations where statistics are
wsed for comparison, and the only question is whether the statistic is greater than or
less than a value, as in choosing the best way to process a database retrieval from one
of several equivalent methods based on estimated sises of the sets involved [4].

Secomnd, absclute bounds often are ecasier to calculate than estimates. The usual need
for distributional assumptions means many more parameters in estimating than
bounding. A good demoumstration is in section 4.3: estimates Jead to nonlinear
equations with expopeatials and 30 closed-form solution, while bounds lead to

recognised i computer science, as in the theory of algorithms where worst-case
analysis wsing the O notation is more common than the complexities of probabiliatic
modelling required for average-case analysis.

Third, absolute bounds can be made tigher with associated assumptions of reasonable
ranges for other waspecified statistics. For example, Chebyshev’s inequality says that
20 more than a fraction ¢’/ D? items can e more than D from the mean of a
distribution. But if the distribution has a single mode close to the mean, the Camp-
Meidell inequality gives resuits about twice as good. Other inequalities cover other
conditions.

The fourth resscm that possibly weak absclute bounds on the value of statistics can

bounds, and the maximum of the Jower bounds, to get cumulative upper and
bounds, and no distributional or independence assumptions are required. Often
very different kinds of reascning can lead to different bounds on the same quantity,
and it is uanatural and inclegant to combine all these different methods into a single
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formula. Section 4 gives some examples.

. Expressing reasoning methods as a number of small, isolated pieces of information is
the idea behind the artificial-intelligence concept of a "production system” (3], a
programming architecture that has been applied to many interesting problems. It is
the opposite extreme to the notion of a computer as a sequential processor, as for
instance in an optimisation program that uses a single global measure to guide search
for a solution to a complicated problem. In a production system there is no such
global metric, only pieces of separate knowledge about the problem called "production
rules”, all competing to apply themselves to & problem. Production systems are good
at modeling complex situations where there are many special cases but no good theory
for accomplishing things. Thus reasoning about absclute bounds given statistics on
antisamples seems a natural application for production systems. It has some
similarities to symbolic algebraic manipulation, which often uses this sort of
architecture [19]. We can use a number of more sophisticated techniques developed in
artificial intelligence to avoid redundant computation in a production system, as for
instance relaxation methods or "counstraint propagation” (3]. We can also write
estimation methods as rules, and combine both estimates and bounds into a
comprehensive system.

”_8. A -hut dmonotntion

'.l'o -how a Httle of what this approach can aceomplhh, we show some behavlot for a
partial Interlisp implementation, as of February 1963. (We have done work since then
on a more complete Prolog implementation, but have not put it together.) The
database abstract includes simple statistics on all first-order (single-word-name) sets,
including statistics on each ship nationality, ship type, and major geographical region.
No correlations between attributes are exploited. "Guess” is the estimate; "guess-
error” the standard deviation associated with that estimate; “"upper-limit® and
“lower-limit® are the absolute bounds on the answer. The "actual answer" is found by
golng afterwards to the actual data and computing the exact value of the statistic.
The system does not understand English — we have just paraphrased cur formal query
language to make it easier to read. For more details and demonstrations see [18].

How many French ships of type ALI are there?

(GUESS: 6.2 GUESS-ERROR: 2.3 UPPER-LIMIT: 10
LOWER-LIMIT: 3)

(ACTUAL ANSWER IS 7)

What's the mean longitude of a Liberian tanker of type END?

(GUESS: 45.4 GUESS-ERROR: 34.5 UPPER-LIMIT: 168
LOWER-LIMIT: 8)

(ACTUAL ANSWER IS 47.4)

How many type ALI tankers are either French or Italian?
(GUESS: 12.6 GUESS-ERROR: 3.3 UPPER-LIMIT: 63

. LOWER-LIMIT: 8)
(ACTUAL ANSWER IS 14)




L P8 -~

What's the frequency of the most common tanker class

among the French, Italian, American, and British?

(GUESS: 18.5 GUESS-ERROR: 2.2 UPPER-LIMIT: 25
LOWER-LIMIT: 15)

(ACTUAL ANSWER'IS 18)

What’s the mean longitude for Liberian ships of type ALl

pot in the Mediterranean?

(GUESS: 49.6 GUESS-ERROR: 42.4 UPPER-LIMIT: 176
LOWER-LIMIT: 6)

(ACTUAL ANSWER IS 44.75)

What's the mean distance of ALI-type ships from SON5SW?

(GUESS: 51.0 GUESS-ERROR: 12.8 UPPER-LIMIT: 57.1
LOWER-LIMIT: 6.0)

(ACTUAL ANSWER IS 42.34673)

What’s the most common registration-nationality region
for type ALI ships currently in the Mediterranean?
(GUESS: 46.6 GUESS-ERROR: 9.3 UPPER-LIMIT: 78
LOWER-LIMIT: 26)
".(ACTUAL ANSWER IS 87)

4 Three examples

In this short paper it is impossible to describe the varied categories of inference rules
on antisample statistics that we have studied. [13] and [13] provide overviews, and
the latter provides additional detalls and many examples. But for illustration we
present three important categories.

4.1. Bounding the sise of set intersections

Set intersections (or equivalently, conjunctions of restrictions on a query set) s:e very
common in user queries to databases. Efficient processing requires good methods for
estimating their counts or sises in advance.

If we know the sises of the sets being intersected, then an upper bound on the sise of
the inteysection is the minimum of the set sises. A lower bound is the sum of the set
sises minus the product of the sise of the database and one minus the number of sets
being intersected, or sers if this is negative.

We can do better if we have more statistics on the antisamples. If we know the mode
frequencies and number of distinet values on some attribute, then an upper bound is
the product of the minimum mode frequency over all sets with the minimum number
of distinct values of a set over all sets. Sometimes this bound will be better than the
upper bound in the last peragraph, and sometimes not. We can see that if the two
minima occur for the same set, the bound will be more thaa the sise of that set, since
the product of a mode frequency and number of distinet values for a single set must be
more than the sizse of a set. On the other hand, consider two sets of sizes 1000 and
2000, with mode frequemncies om some attribute 100 and 300 respectively, and with
numbers of distinct values 50 and 8§ respectively. Thea the simple bound of the last

A
» . .

*

P




3° 3 Wl 4

- whly

N ¥ A LU

AR ARD

it g g e e

B2 e e s

o

-

L R

’ 'ﬁ\"*’\‘.ﬁ ;fg;.\}

R BT AL s R E.L ¢,

paragraph is 1000, but the frequency-information bound is min(100,500) * min(50,8)
= 500 which is better (smaller). So both approaches are needed.

We can generalise this method to cases where we know more detailed information of
the frequemcy distributions of the sets. We just superimpose the frequency
distributions and take the minimum of the superimposed frequencies for each value.
See Figure 3.

¥ instead (or in addition to) frequency information we have maxima and minima on
some attribute, we may be able to derive bounds by another method. An upper
bound on the maximum of a set intersection is the smallest of the maxima on each set,
and a Jower bound is the largest of the minima on each set. See Figure 3. Hence an
upper bound oa the sise of an intersection is the number of items in the entire
database having values between that cumulative maximum and minimum. If the
maxima are all identical and the minima are all identical, then the cumulative
maximum and minima are the same as on any of the sets being intersected, so the
simple (set-sise) bound will always be better. But the maximum-minimum bound can
be an excellent one whenever two or more of the sets being intersected have very
different ranges, as when we are intersecting two sets with ranges 100 to 500 and 450
to 780 respectively, and the cumulative range is €50 to 500, and there are few items in

the database with those putlenln values ~ we can then impou an upper bound on
.. thehmnctlondu . , . .

We can also use sums (or eqnivalently, mem) on lttribute-. Suppor i '} we whh to
estimate the sise of the intersection of only two sets; (2) one set is | _.artition of the
database for the valwes of some numeric attribute; (3) we know * _lues this
attribute can have; and (4) know the sise and mean of both sets. Then we can write
two linear Diophantine (integer-solution) equations with the number of items having
each possible value of the attribute being the unknowns, and solve for a finite set of
possibilities. We can then take the minima of the pairs of the maximum possible
values for each values, and sum to get an upper bound on the sise of the intersection.
Diophaatine equations tend to support powerful inferences, since the integer-solution
constraint is a very strong one. There turn out to be many related phenomena that
can give additional constraints on the variables, making inferences even better. See
(24] for detalls.

Several other kinds of reasoning can bound the sise of set intersections as discussed in
(16].

4.3. Bouadiag the means of mosotonically transformed values

Suppose we know the means and standard deviations of some antisamples. Suppose
we are interested in the logarithms of the original data values. (Sometimes different
transformations on the same data values are all useful, or sometimes we may not be
sure when we create the antisamples what the best transformation is, or sometimes
differeat ranges of the data values require different transformations for best analysis.)
And suppose we are interested in knowing the mean of the transformed data values.
[18) examines this problem im detal; we summarise it here.

A variety of classical techuiques bas been applied to this problem. For instance, youn
can approximate the logarithm curve by a three-term Taylor-series approximation at
the mean, giving as an estimate of the mean of the logarithms log(u)—(0?/ 24?) But it
is hard to obtain comfidemce intervals om this result to quantify its degree of
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i uncertainty, though several methods have been tried {7]. This estimate is always

biased, and sometimes is an impossibility (when it gives a value unachievable with any

A possible distribution consistent with the original mean and standard deviation).

3 Rule-based inferences about bounds provide an appealing alternative. Several simple
= methods bound the mean of the logarithms, no one the best for all situations. We can
A

try them all, separately for upper and lower bounds, and combine results.

1. Linear approximation bounds. We can draw lines that lie entirely above or entirely
3 below the the function we are approximating on an interval. For many curves, the best
upper bound line is found by taking the tangent at the mean, and the best lower bound line
is found by drawing a secant across the curve from the smallest data value to the largest
data value. See Figure 4.

o~
;: 2. Quadratic-approximation bounds.
f: A. Taylor-series. That is, bounds curves from first three terms of a Taylor-series
. about some point on the function.
o B. Chebyshev-Lagrange. That is, a quadratic LaGrange interpolating polynomial
- passing through the three points of the function that are optimal for Chebyshev-
2 approximation. o ‘ ‘ ‘ D
X C. Special-purpose. For particular functions (e.g. reciprocal and cube), particularly
tight bounds because of peculiarities of the mathematics of those functions.
; D. Pseudo-order-statistic. Taylor-series approximations improved by Chebyshev's
Y inequality and related inequalities.
X}
';' 3. Order statistics. If we know medians or quantiles we can break up the approximation
problem into subintervals corresponding to each quantile range, and solve a subproblem on
~ each.
:: 4. Optimisation. We can iteratively converge to optimal bounds for a class of bounding
! curves, by expressing the class parametrically and optimising on the parameters, with
s objective function the statistic being bounded. Thuis tends to be computationally expensive
and not advisable when estimation speed is important.
R
e, As an example, suppose we know the minimum of the set of data is 10, the maximum
’:. is 20, the mean is 15, and the standard deviation is 1. Then the linear bounds on the
3 mean of the logarithm are 2.650 and 2.708; the Taylor-series bounds found by taking
% the Taylor-series at the mean are 2.689 and 2.716; the LaGrange-Chebyshev’s bounds
are 32.701 and 2.709; the Pseudo-Order-Statistics bounds are 3.700 and 2.711; and the
N best quadratic bounds found by optimisation are 3.703 and 3.708. For another
'~ example, suppose the minimum is 1, and maximum is 200, the mean is 190, and the
N standard deviation is 20. Then the linear bounds are 5.032 and 5.247; the Taylor-
" series bounds are 1.484 and 5.2432; the LaGrange- Chebyshev’s bounds are 2.948 and
X 5.499; the peseudo-order-statistics bounds are 3.363 and 5.242; and the bounds found
- by quadratic optimization are 5.032 and 6.242. These bounds are surprisingly tight,
x and should be adequate for many applications.
f_; There is a more direct optimization method for this problem, involving treating the
Y optimisation variables as the values of a distribution satisfying certain constraints and
<}
S
N R R
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moving the variables around until ap optimum is schieved. We have experimented
with such optimisation, but it ia considerably less well-behaved than the parametric
one mentioned earlier. It is tricky to get to converge properiy, even in simple
situations. This optimisation also suffers from serious sensitivity to errors in
calculation. And since we can only use a small number of variables compared to the
sizes of many interesting populations, the number converged to by the optimisation
process will be only a lower bound on an upper bound, or an upper bound on a lower
bound, and these things are considerably less helpful to us than the upper bounds on
upper bounds and lower bounds on lower bounds obtained with the rule-based
inferences discussed above. This is a fundamental weakness of these "direct"
optimisation methods, and an important justification for our approach.

4.3. Optimal rules relating statistics on the same distribution

Another category of rules relates statistics on the same attribute of the same set (as
when one estimates or bounds the mean given the median). Many of these situations
are instances of the “isoperimetric problem" of the calculus of variations ([23], ch. ¢),
for which there is a general solution method. The mathematics becomes complicated
even for some rather simple problems, but the rules generated are mathematically
guaranteed to be the best possible, an important advantage.

The idea is to find a .p‘rob-hﬂlty distribution that has an extréme v‘ulne .fbr e.ititer some

statistic or the entropy of the distribution, and then find the extreme value. Let the
probability distribution we are trying to determine be y = f{x). Suppose we have
some integral we wish to maximise or minimise:

M
f’(’ Wby * - )ds

Suppose we have prior constraints on the problem as known statistics expressable as
integrals:

M
Ci=[Gils.0spy, - - )ds
-
where j goes from 1 to k, the total number of known statistics. As before, the limits m
and M represent the minimum and maximum on the distribution, or at worst lower
and upper bounds respectively on these quantities; these are necessary for this method
to work, and they must be the same for all integrals.

As examples of statistics expressible as integrals:

i
mean: f zyde
u-
variance: f(z~p)"ds

M /3
root mean square error: [ f (v-h(z ))’dz]
M
median: fs_,(z —v)ydz , w_)(z) the unit step function

It was proved by Lagrange ([323], p. 51) that a necessary condition for an extremum
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33 (either maximum or minimum) of the F integral is .
--, dF & 9G; s
— Aj=——1 =0 - T
A oy ,2-31( T oy RS
N If the F is y*log(y), this method gives a necessary condition for the maximum-entropy : ‘_4
> distribution. Several researchers have used this to obtain maximum-entropy estimates R
of unknown moment statistics from knowledge of other moment statistics, in both the Co i
N unidimensional and multidimensional cases ([17], Appendix). For the unidimensional "y
’ case, the form of the maximum entropy distribution given moments up through the Z;{:'."-z
‘:: rth is g
.' -l+é‘\'~si ___\..1-
y=e °° o
::: The remaining problem is to determine the As (Lagrange multipliers), which can be -'_:f.:',;j
:.'.‘ tricky. A number of arguments in [17] justify the term "optimal” for these estimates. AR
q " -
3 F can also be a statistic itself. For instance if F is the kth moment when we know o]
- values for all moments up through the (k-1)th, the necessary condition for a solution o
T T :
" C e '+ 5 (As)=0 i
- SO im0 . ’
" This is a kth-order polynomial, with a maximum of k solutions. Hence the probability D
distribution that gives the extrema of the kth moment is a k-point discrete probability —
- distribution. It can be found by a symbolic optimisation process with 2k unknowns (k -
) values of x, and k associated probabilities) with k equality constraints in the form of e
5 the known k-1 moments plus the knowledge that the probabilities must sum to 1.
i
i 5. Detailed comparision: antisampling vs. sampling She——
: We now evaluate the relative merits of sampling and antisampling. We assume data SR
o populations stored in computers (a condition that is becoming increasingly common s
" with routine administrative data). REOE
A 5.1. Miscellaneous advantages of antisampling ~
3 ° Most of our arguments concern the relative efficiency of various kinds of sampling vs.
o antisampling. But first some general points:
2
(1) Sometimes the data is already aggregated. Much of the published U.S. Census
K data is - it provides privacy protection for an individual’s data values. So we
' must use antisampling methods in some form if we want to estimate statistics
o not in the original tabulation -- we have no other choice.
% (2) Sampling is poor at estimating extremum statistics like maximum and mode
frequency. Extremum statistics have important applications in identifying RONC
:: exceptional or problematic bebavior. Antisampling handles such statistics well, RN
oy in part because it can use extremum statistics of the entire database as bounds. D
)
‘ L
N oty
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(3) Updates to the database can create difficulties for samples, since the information
about what records the samples were drawn from will usually be thrown away.
For antisampling with many statistics including counts and sums, however, the
original data is not needed: the antisample statistics can be updated themselves
without additional information.

5.2. Experiments

We have conducted a number of experiments comparing accuracy of antisampling
with simple random sampling, using randomly generated queries on two rather
different databases, as reported in chapter 6 of [13]. When the same amount of space
was allocated to antisampling and sampling (that is, the sizse of the database abstract
was the same as the sise of the sample) we found estimation performance (the
closeness of estimates to actual values) very similar in most cases, and better for
antisampling the rest of the time. This can be attributed to the duality of sampling
and antisampling methods. Both exploit low-redundancy encodings of typically high-
redundancy database, s0 we expect their information content and suitability for
estimation to be similar. An occasional better pexformance of antisampling seems due
to bounds.

We have also conducted more specific experiments with the set intersection bounds of -
‘section 4.1 {16], and the transformation mean bounds of section 4.2 {18]. All three sets
- of experiments did not measure computation time because the test databases were too

small, but we expect that this will be the major advantage of antisampling, as we now
diecuss.

5.3. Simple random sampling and paging

We are curreatly secing two important tendencies in statistical analysis of data sets on
computers [31]: a shift from large multi-user computers to small personal computers,
and a continued increase in the sise of data sets analysed as success has been achieved
with smaller data sets. Both make it increasingly impossible for analysis, or even
calculatioa of a mean, to be carried out in main memory of a computer, and secondary
storage isswes are increasingly important. This is significant because secondary
storage like magnetic disks and optical disks, and tertiary storage ke magnetic tape,
is organised differently from main memory: it is broken up into "pages" or "blocks"
that must be handled as a unit. This is not likely to change very soon, as it follows
from the physical limitations of secondary and tertiary storage. So since transfer of
pages from a secondary storage device to a central processor takes orders of
magnitade (typically, a factor of 1000) more than the operations of that processor or
transfers within main memory, paging cost is the only cost of significance in statistical
analysis of large data sets.

This has important implications for sampling methods because they are much less
efficient when data is kept in secondary storage than main memory. Consider simple
random sampling without replacement. We can use Yao's standard formula [28] to
estimate the number of pages that need to be retrieved to obtain k sample items,
assuming items are randomly distributed across pages, in just the same way the
formula is used for any set randomly distributed across pages. Let p be the number of
ftems on each database page, and let n be the number of items in the entire database.
Then the formula is:

n_n l'.l n-p-k+1
P pli=t n-k+1
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We have tabulated approximations to this function for some example values in Pigure
8, using the formula of [33] which is much easier to evaluate while having a maximum
error for this range of values (reading off the tables in that paper) of less than 0.1%.
We assumed a million-record database. We used two values for page sise: p=100,
which suggests a record-oriented database with perhaps ten attributes per record, and
P=1000, which suggests the transposed file organisation common with statistical
databases. As may be observed, the number of pages retrieved, essentially the access
cost for data in secondary storage, is close to the sise of the sample for small samples.
It only becomes significantly less when the sample sise approaches the total number of
pages In the database, in which case the number of pages retrieved approaches the
number of database pages, a situation in which sampling is uselese. So simple random
sampling is going to be approximately p times less page-efficient than a full retrieval of
the eative database, which means 100 or 1000 times worse for our example values of p.
The obvious question is thus: why not just calculate the statistic on the database and
not bother with the inexact answer provided by sampling?

But aatisampling does not share this grest paging inefficiency. Assuming all statistics
of attributes of each antisample are stored together on the same physical page — a
requirement usually easy to fulfill since there are not many useful statistics one can
give for a set as a whole - only one page need be retrieved for each antisample used.
Usually this is a small number. If we choose a good group of antisamples, we can

. specify many. populations users ask abont in terms of set operations — intersection, -
- - unfon, and complement - on the sets covered by the sntisampled, or at worst proper -

subeets of those antisamples. For instance, if we want to know the mean of the
American tankers in the Mediterranean, and we have antisamples for every major
matiomality, major ship type, and region of the oceans, we need only retrieve three
pages: the page with statistics about American ships, the page with statistics about
tankers, and the page with statistics of ships in the Mediterranean. In geperal, ifit is
possible to express a population P in terms of K antisamples, we need only retrieve K
pages, independent of the size of P, the sises of the antisamples, or the sise of the
database. 80 as the database increases, the relative advantage of antisampling to
sampling increases.

5.4. Further difficulties with simple random sampling

Three additional problems complicate the use of simple random sampling relative to
antisampling. First, it is usually desirable that sampling be without replacement, and
additional algorithms and data structures are aeeded to ensure this [25).

Second, we have 0 far we have igunored the effort to locate members of a data
population oa pages in the first place, which can add farther paging costs. If we have
mo index or hash table, we simply must examine each page in turm, throwing out the
ones that have no population members, and this increases the number of pages fetches.
Por small populations, this means a high wastage probability that can easily be
greater than the sise of the sample. So it seems desirable to access a population
through aa index or hash table whenever possible. But an index may be too big to
reside in main memory, and have paging costs itself. Usually database indexss link
together items having the same value for one particular attribute at a time, so if a
data population P of {atervest is specified by a number of restrictions on a number of
differeat attributes, many pages of index may have to be retrieved followed by a
lengthy intersection operation of the set of all pointers to data items. Hashing can
move easily avoid extra paging, but usually allows access on only one attribute or
combination of attributes, which means it is does not improve performance much in
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most database systems.

Third, many statistical detabases are not stored by record or "case" but in the
"traneposed” form ([34], section ¢-1-4), where onmly values for ome attribute for
difforent items (or some small subset of the total set of attributes) are stored om a
pege. This is an officient form of storage for calculation of counts and means on a
single attribute because there are more values of that attribute per page. But it
usually dossn’t help sampling becanse the only sampling ratios that justify sampling,
based on sur above arguments, tend te be very small, much less than the reciprocal of
the number of itemms per page. Increesing the number of items per page by
transpesition can caly increase this by a emall factor in most cases (at best the ratio of
the sise of a fall record to the sise of an attribute), which will often still result in only
one item being fviched por page. Transposition aleo slows all queries involving several
attributes net cn the same page.

5.5. Rejeinder 1: rendomised datadases

. techaiqgues. Unfostunstely, other technigues seem to have other disadvantages. .

Censider for instance “rendemicing” the database - that is, putting data items onto
peges in & rendom way. Te got & randem cample then ene could take all the items on
Just & fow pages, and et Just & fow leme en many peges, and save in paging [10).
(Nete that rendomining an indm to the dota would do 2o good — the actual data item
ave coipensive.) But this is havrder than it sounds. A policy has to be
fallowed Jong befave the deta are used, requiring much shuflling oa additions, deletions

for ccsvdintions of data with time are common and must be

f
1

whea queries put 20 restrictioms

-
on the dote populnticn. Wiih tight sestsictions, you will have to look at masy pages
anyway just to fiand encugh data items to setisfy them, even if the database has been

Jonger can the same

most lapge databeses ase mulii-puspace to justify thelr expense, used for instance for
routine clevisal opesetions for dota entry as well as statistical study. Even for a
hurts performance for calculation

s
r
1
:
|

§.6. Rejoinder 3: & separate database for sampling

Since sampling is so antithetical to usual operations of the database, it might be
moved to a separate machine, or copled to new structures inside the same machine,
and dome away from the original data. Extracting the sample may be much work
consldering our arguments of the previous sectioms, but once done the cost can be
amortined over multiple queries, provided multiple queries can be asked, which
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' some sample S we decide we need to look at a superpopulation of the original

population P, or sibling population of P (a population with s common

L& superpopulation with P), we must go back to the database and resample all over again
Q; to obtain a mew sample to analyse - we cannot use any part of our old sample in the
L superpopulation sample because clearly it is biased in relation to the new sample. On
v the other hand, if we chose an original data population P that was too large (even
" though 8 is a comfortable sise) and decide we want to focus in on some subpopulation

of it, merely censoring out items in 8 that do not belong to the subpopulation may
give too small a set for statistical analysis, particularly if the new subpopulation is
quite a bit smaller than the old. In other words, sampling is "brittle": the results of
one sampling are difficult to extend to a related sampling.

e AT g
‘..‘E

e

AR

But antisampling extends gracefully to related populations. Adding another
restriction to restrictions defining a set is usually straightforward, and can never
worsen bounds obtained without the restriction -- and the the parts of the previous
analysis can be reused. Similarly, removing a restriction introduces no new problems
since analysis of the aew population was a subproblem studied in reasoning about the
original population. This accommodation of related user queries by antisampling is
because much statistical analysis focuses on meaningfal sets, not random sets, and

.
AP

et

antisamples are sets.
‘% . P . . . .o
'i 5.7. Rejoinder 8: stratified and multistage sampling
'-" Given the disadvantages of randomising the physical placement of items in a database,
we might take the opposite course and place items on pages in systematic ways. To
sample we could use the same techuniques people use in sampling a real world where
S data ftems cluster in different ways [1,5]. For instance, if pages represent time periods,
N we could do a two-stage sampling where we choose first random periods represented
b by random pages, and them random items within those pages. Or in a population
3 census database, if pages represeat particular pairs of geographical locations and
occupation, we could do a stratified sampling within carefully chosen geographical-
i'é occupational combinations.
X
X But there are many problems with using such sampling paradigms:
o} 1. They are not for amateurs. Much knowledge about the nature of the data is necessary to
use them properly ~ perhape only by an expert statistician should, and even then models of
X the data must be reconfirmed carefully. This can mean extensive prior statistical study of
3] ¢ relsted data, as in the first example above where we must be sure that the times chosen are
“ truly random, or in the second example where the geographical-occupational combinations
must be valid strata.
2. It is hard to quantify our certainty that proper conditions pertain, and it is therefore
difficult to put standard devistions on the estimates obtained by these samples. "o,
X 3. If the data change with time their correlational properties may also change. Changes can o
:f cause problems with pages overflowing or becoming too sparse, requiring awkward
o immediate rearrangements of the partitioning scheme. XN
K 4. We can only cluster (group semantically related items together) along one dimension at & ]
Y time. For instance, if we group bills by date, we cannot simultaneously group them by oy
E geographical location. This is awkward because & good partitioning for stratified sampling : e
r to study one attribute is not necessarily a good partitioning for another attribute -- database e
s o
{




RS e xa T G Tt e s S O LR N AR e W

e

B

b - 18-

>4 ~

A stratification is permanent unlike survey design stratification. And grouping records by

"hybeid® criteria based on different dimensions of the data is hard to analyse.

NA -

h 5. Complex sampling paradigms are limited to certain statistics. For instance, stratified
A sampling only works well with "additive" statistics such as count and sum that can be
f»é R totalled over disjoint partitions to get a cumulative statistic, as well as certain ratio
B statistics.

w3 6. Complex sampling paradigms may require additional page access. In order to find the
L right pages for stratified sampling or multistaged clustered sampling, one needs "metadata”
e [9] describing the data and its storage, and the sise of this often requires it be in secondary
3 storage. Metadata is useful for many other purposes such as access method selection and

b integrity maintenance, 50 there can be a good deal of it for & datsbase. It also makes sense
) to keep it with indexes to the data, if any, and these may have to be kept in secondary

Py storage anyway.

¥ 7. The comparision of stratified and multistage sampling to simple antisampling is unfair
T because there are more sophisticated kinds of antisampling that correspoad to the more
¥ sophisticated kinds of sampling. For instance, "stratified antisampling” can be done where
we partition a population into disjoint pieces as with stratified sampling, but thea use
! antisampling techniques to make the estimate on each piece, combining the results as with

'\ . .+ v gtratified sampling.: See Figure 8. If the pieces are chosen to minimise intrapiecé variation,

A + -+ ¥ the result can be bétter than-that for simple antisampling. Sometimes stratified sampling

; : will be better than stratified antisampling, and sometimes vice versa, in the same way that

W sampling compares with antisampling depending on how well the nature of the datahese is

captured in the databese abstract.

*;z In summary, difficuit administrative issues in both statistical analysis and databass

“5}5 Recessary expertise are scarce. It may be on this reason alome will not be wused,

W because if one cannot be sure one is getting a random sample thea all the conclusions
one draws from that sample are suspect.

N
o _ ‘
'2 5.8. Rejoinder 4: special-purpose hardware
'2 ‘ <
¥y So far we have assumed conventional hardware. If not, statistical calculations can be JanC
‘ faster, but this does not necessarily make sampling any more attractive. —
%l .
ﬁ Yor example, we can use logic-per-track secondary storage devices (surveyed in [18)). -
£ We can put hardware in the head(s) of a disk so that it calculates the sum of all items B
;rg on a track within one revolution of the track, or calculates the sum of selected items -
A by marking the items on one revolution and summing them on the next. The idea can o
& work for any moment statistic, or maximum and minimum, but other order and —
bt - frequency statistics are not additive in this sense and do not appear to be computable e
e this way. So we can speed calculation of some statistics, perhaps additionally with .
3 paralielism in read operations on different disks or tracks, if we can afford a special- i’_-':;:'
» - purpose "moment-calculating” disk, which is likely to be expensive because of the RN
o lmited demand. But such a device would speed calculation of the exact statistic on g ’
the data too, hastening comstruction of a database abstract. Construction might be '
! very efficlent because it can be dome by a single pass through all tracks of the disks in R
15 a disk-based databese, an intensive utflisation of each track. :.:-:.:
K Ty
.‘\, 4 Similasty, multiple disks or muilti-head disks could enable faster statistical calculations +)
X XY
i
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4
j’; since operatioms could be done om several devices in paralld. But this doesn't make
the paging problem go away - it just makes paging faster. And it makes database
by abetract construction simultaneously faster. :
g e
e But there is cne hardware development that will improve the position of sampling A
> relative to amntisampling: larger main memories that can hold larger databases. R
Antisampling can still be performed in this sitvation (and can be thought of as a form -
of caching), but the paging advantage disappears. Other advantages do not
N disappear, however. And database sises are increasing too.
2 6. Conclusions : T
We are developing a mew technique for estimating statistics, primarily statistics on *
& databases. This "antisampling” is not just another sampling method, but something
7! fandamentally different, and subject to quite different advantages and disadvantages
4 than sampling. We have presented some of them One disadvantage not yet mentioned
3 is the sumber of details that remain to be worked out. Considering the great effort
" over the years in the perfection of sampling techniques, much more work is clearly
needed to make antisampling techniques a routine part of a statistical analysis arsenal.
I_EI . . N S
f‘i " Lo L . [
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Antisample A1l —> Antisample A1l stats
(e.g. lowans)

- A
Antisample A2 Antisample A3 statistics
(e.g. ages 30-34)
selection ~
selection inference
;" . Population P — ~ ~ ~'=3>Population P statistics -
(e.g. Iowans ages 30-34) (goal)

“ﬂ*linl inferqce

Sn}:ple S —> Sample S statistics
(e.g. Iowans ages 30-34
with middle social

. security digit = §)

Figure 1: general outline of sampling and antisampling
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PFigere 2: An upper bound on an intersection sise from value frequencies
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< tankers ->
<-- American ships -->

<-- ships in the Mediterranean ->

< X >

lengths in feet:
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Figure $: range restriction bounds on an intersection
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Figure 4: linear bounds on a mean of transformed values




Predicted paging for random sampling of 1,000,000 records
page sise sample sise  # database pages | # sample pages
- 100 100 10000 99.5
100 300 10000 295.6
100 1000 10000 952.1
. 100 3000 10000 2595
100 10000 10000 6340
100 30000 10000 9525
100 100000 10000 10000
.}" 1000 100 1000 95.2
£ 1000 300 1000 259.3
P 1000 1000 1000 632.5
€ 1000 3000 1000 950.5
1000 10000 1000 1000.0
o 1000 30000 1000 1000.0
= 1000 100000 1000 1000.0
%
.ﬂ
o Figure §: number of pages needed to get k random sample items from a million-record database,
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Antisample 1 Antisample 3

£|

(e.g. town and city Iowans) (e.g. rural Iowans)

3 A

K,

’ Antisample 2

]

: (e.g. ages 30-34)

3

3

;: seleu;tion selection

.’ sejection selection

’-3 L © - -oStratam A Stratum B - 4

: (e.g. Iowans ages S0-34 (e.g. Iowans ages 30-34

| in towns and cities) in rural areas)

§

y

A

selektion selettion

{

. Population

2 ’ (e.g. Iowans ages 30-34)

3

p

i .

[]
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! Figure 6: stratified antisampling
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